

Calculations Policy

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4+3=7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4+2

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.

6 + 5

Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality e.g.

$$6 + \Box = 11$$

 $6 + 5 = 5 + \Box$
 $6 + 5 = \Box + 4$

TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8

Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.

41 + 8

40 + 9 = 49

TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25

Chidlren to represent the base 10 in a place value chart.

Looking for ways to make 10.

Formal method:

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243

+368 611

Conceptual variation; different ways to ask children to solve 21 + 34

?	
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21 + 34 = 55. Prove it

21

<u>+34</u>

21 + 34 =

= 21 + 34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s	
10 00	0	
0 0 0	?	
?	5 -	

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 − 3 = 1	Ø Ø Ø Ø O	3 ?
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	0 1 2 3 4 5 6 7 8 9 10
		4 6

Represent the base 10 pictorially, remembering to show the exchange.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11.

Column method using place value counters.

Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal colum method. Children must understand what has happened when they have crossed out digits.

Conceptual variation; different ways to ask children to solve 391 - 186

Raj spent £391, Timmy spent £186. How much more did Raj spend?

Calculate the difference between 391 and 186.

Missing digit calculations

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4 + 4 + 4$	Children to represent the practical resources in a picture and use a bar model.	$3 \times 4 = 12$ 4 + 4 + 4 = 12
There are 3 equal groups, with 4 in each group.	88 88 88	
Number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four.
Cuisenaire rods can be used too.	00001000012	3 × 4 = 12

Formal column method with place value counters. 6 x 23

Children to represent the counters/base 10, pictorially e.g. the image below.

Formal written method

$$6 \times 23 =$$

23

$$\frac{\times 6}{138}$$

When children start to multiply $3d \times 3d$ and $4d \times 2d$ etc., they should be confident with the abstract:

To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .

Conceptual variation; different ways to ask children to solve 6 × 23

23 23 23 23 23

?

Mai had to swim 23 lengths, 6 times Find the product of 6 and 23 a week.

How many lengths did she swim in one week?

With the counters, prove that 6×23 = 138

 $6 \times 23 =$

$$=6 \times 23$$

× 23

What is the calculation? What is the product?

100s	10s	1s
	000000	000 000 000 000

Calculation policy: Division

Key language: share, group, divide, divided by, half.

2d ÷ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.

 $13 \div 4$

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.

There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

13 ÷ 4 - 3 remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

'3 groups of 4, with 1 left over'

Sharing using place value counters.

$$42 \div 3 = 14$$

Children to represent the place value counters pictorially.

Children to be able to make sense of the place value counters and write calculations to show the process.

$$42 \div 3$$

 $42 = 30 + 12$
 $30 \div 3 = 10$
 $12 \div 3 = 4$
 $10 + 4 = 14$

Short division using place value counters to group. $615 \div 5$

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters 2544 ÷ 12

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

100s	10s	1s
0000	0000	0000
0000	00	

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

12 2544
24
14
12
2

1000s	100s	10s	1s
	0000	0000	0000
	0000	0000	8888
	9000		9999

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

24

12

24

12

24

24

24

24

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

 $615 \div 5 =$

What is the calculation? What is the answer?

